Copied to
clipboard

G = C2×C6.C42order 192 = 26·3

Direct product of C2 and C6.C42

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C6.C42, C24.85D6, C23.64D12, C23.19Dic6, (C22×C12)⋊9C4, (C23×C4).8S3, C6⋊(C2.C42), (C2×C6).27C42, (C23×C12).1C2, C6.27(C2×C42), C23.69(C4×S3), (C22×C4)⋊7Dic3, (C22×C6).24Q8, (C22×Dic3)⋊9C4, (C22×C4).420D6, (C22×C6).190D4, C22.59(C2×D12), C22.53(D6⋊C4), (C23×C6).95C22, (C23×Dic3).6C2, C23.47(C2×Dic3), C22.22(C4×Dic3), C22.30(C2×Dic6), C23.106(C3⋊D4), (C22×C6).359C23, C23.309(C22×S3), C22.23(C4⋊Dic3), C22.27(Dic3⋊C4), (C22×C12).480C22, C22.25(C22×Dic3), C22.32(C6.D4), (C22×Dic3).194C22, C6.54(C2×C4⋊C4), C2.3(C2×D6⋊C4), (C2×C12)⋊34(C2×C4), (C2×C4)⋊9(C2×Dic3), C22.64(S3×C2×C4), C2.3(C2×C4⋊Dic3), (C2×C6).42(C2×Q8), C2.15(C2×C4×Dic3), (C2×C6).55(C4⋊C4), (C2×C6).545(C2×D4), C6.64(C2×C22⋊C4), C2.3(C2×Dic3⋊C4), C32(C2×C2.C42), (C2×Dic3)⋊20(C2×C4), (C22×C6).97(C2×C4), C2.2(C2×C6.D4), C22.83(C2×C3⋊D4), (C2×C6).69(C22⋊C4), (C2×C6).140(C22×C4), SmallGroup(192,767)

Series: Derived Chief Lower central Upper central

C1C6 — C2×C6.C42
C1C3C6C2×C6C22×C6C22×Dic3C23×Dic3 — C2×C6.C42
C3C6 — C2×C6.C42
C1C24C23×C4

Generators and relations for C2×C6.C42
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=c, f2=bcd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de5 >

Subgroups: 664 in 330 conjugacy classes, 183 normal (21 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, C2×C6, C2×C6, C22×C4, C22×C4, C24, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×C6, C22×C6, C2.C42, C23×C4, C23×C4, C22×Dic3, C22×Dic3, C22×C12, C22×C12, C23×C6, C2×C2.C42, C6.C42, C23×Dic3, C23×C12, C2×C6.C42
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, C23, Dic3, D6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C22×S3, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C2×Dic6, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C2×C2.C42, C6.C42, C2×C4×Dic3, C2×Dic3⋊C4, C2×C4⋊Dic3, C2×D6⋊C4, C2×C6.D4, C2×C6.C42

Smallest permutation representation of C2×C6.C42
Regular action on 192 points
Generators in S192
(1 93)(2 94)(3 95)(4 96)(5 85)(6 86)(7 87)(8 88)(9 89)(10 90)(11 91)(12 92)(13 78)(14 79)(15 80)(16 81)(17 82)(18 83)(19 84)(20 73)(21 74)(22 75)(23 76)(24 77)(25 136)(26 137)(27 138)(28 139)(29 140)(30 141)(31 142)(32 143)(33 144)(34 133)(35 134)(36 135)(37 117)(38 118)(39 119)(40 120)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 98)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 105)(57 106)(58 107)(59 108)(60 97)(61 160)(62 161)(63 162)(64 163)(65 164)(66 165)(67 166)(68 167)(69 168)(70 157)(71 158)(72 159)(121 153)(122 154)(123 155)(124 156)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(169 188)(170 189)(171 190)(172 191)(173 192)(174 181)(175 182)(176 183)(177 184)(178 185)(179 186)(180 187)
(1 103)(2 104)(3 105)(4 106)(5 107)(6 108)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 177)(14 178)(15 179)(16 180)(17 169)(18 170)(19 171)(20 172)(21 173)(22 174)(23 175)(24 176)(25 146)(26 147)(27 148)(28 149)(29 150)(30 151)(31 152)(32 153)(33 154)(34 155)(35 156)(36 145)(37 72)(38 61)(39 62)(40 63)(41 64)(42 65)(43 66)(44 67)(45 68)(46 69)(47 70)(48 71)(49 88)(50 89)(51 90)(52 91)(53 92)(54 93)(55 94)(56 95)(57 96)(58 85)(59 86)(60 87)(73 191)(74 192)(75 181)(76 182)(77 183)(78 184)(79 185)(80 186)(81 187)(82 188)(83 189)(84 190)(109 163)(110 164)(111 165)(112 166)(113 167)(114 168)(115 157)(116 158)(117 159)(118 160)(119 161)(120 162)(121 143)(122 144)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(131 141)(132 142)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)(73 79)(74 80)(75 81)(76 82)(77 83)(78 84)(85 91)(86 92)(87 93)(88 94)(89 95)(90 96)(97 103)(98 104)(99 105)(100 106)(101 107)(102 108)(109 115)(110 116)(111 117)(112 118)(113 119)(114 120)(121 127)(122 128)(123 129)(124 130)(125 131)(126 132)(133 139)(134 140)(135 141)(136 142)(137 143)(138 144)(145 151)(146 152)(147 153)(148 154)(149 155)(150 156)(157 163)(158 164)(159 165)(160 166)(161 167)(162 168)(169 175)(170 176)(171 177)(172 178)(173 179)(174 180)(181 187)(182 188)(183 189)(184 190)(185 191)(186 192)
(1 71)(2 72)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 67)(10 68)(11 69)(12 70)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 25)(21 26)(22 27)(23 28)(24 29)(37 104)(38 105)(39 106)(40 107)(41 108)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 109)(60 110)(73 136)(74 137)(75 138)(76 139)(77 140)(78 141)(79 142)(80 143)(81 144)(82 133)(83 134)(84 135)(85 162)(86 163)(87 164)(88 165)(89 166)(90 167)(91 168)(92 157)(93 158)(94 159)(95 160)(96 161)(121 186)(122 187)(123 188)(124 189)(125 190)(126 191)(127 192)(128 181)(129 182)(130 183)(131 184)(132 185)(145 171)(146 172)(147 173)(148 174)(149 175)(150 176)(151 177)(152 178)(153 179)(154 180)(155 169)(156 170)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 145 42 13)(2 176 43 35)(3 155 44 23)(4 174 45 33)(5 153 46 21)(6 172 47 31)(7 151 48 19)(8 170 37 29)(9 149 38 17)(10 180 39 27)(11 147 40 15)(12 178 41 25)(14 64 146 102)(16 62 148 100)(18 72 150 98)(20 70 152 108)(22 68 154 106)(24 66 156 104)(26 63 179 101)(28 61 169 99)(30 71 171 97)(32 69 173 107)(34 67 175 105)(36 65 177 103)(49 83 159 130)(50 139 160 188)(51 81 161 128)(52 137 162 186)(53 79 163 126)(54 135 164 184)(55 77 165 124)(56 133 166 182)(57 75 167 122)(58 143 168 192)(59 73 157 132)(60 141 158 190)(74 85 121 114)(76 95 123 112)(78 93 125 110)(80 91 127 120)(82 89 129 118)(84 87 131 116)(86 191 115 142)(88 189 117 140)(90 187 119 138)(92 185 109 136)(94 183 111 134)(96 181 113 144)

G:=sub<Sym(192)| (1,93)(2,94)(3,95)(4,96)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,91)(12,92)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,73)(21,74)(22,75)(23,76)(24,77)(25,136)(26,137)(27,138)(28,139)(29,140)(30,141)(31,142)(32,143)(33,144)(34,133)(35,134)(36,135)(37,117)(38,118)(39,119)(40,120)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,97)(61,160)(62,161)(63,162)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,157)(71,158)(72,159)(121,153)(122,154)(123,155)(124,156)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(169,188)(170,189)(171,190)(172,191)(173,192)(174,181)(175,182)(176,183)(177,184)(178,185)(179,186)(180,187), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,177)(14,178)(15,179)(16,180)(17,169)(18,170)(19,171)(20,172)(21,173)(22,174)(23,175)(24,176)(25,146)(26,147)(27,148)(28,149)(29,150)(30,151)(31,152)(32,153)(33,154)(34,155)(35,156)(36,145)(37,72)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,85)(59,86)(60,87)(73,191)(74,192)(75,181)(76,182)(77,183)(78,184)(79,185)(80,186)(81,187)(82,188)(83,189)(84,190)(109,163)(110,164)(111,165)(112,166)(113,167)(114,168)(115,157)(116,158)(117,159)(118,160)(119,161)(120,162)(121,143)(122,144)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(131,141)(132,142), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(97,103)(98,104)(99,105)(100,106)(101,107)(102,108)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120)(121,127)(122,128)(123,129)(124,130)(125,131)(126,132)(133,139)(134,140)(135,141)(136,142)(137,143)(138,144)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156)(157,163)(158,164)(159,165)(160,166)(161,167)(162,168)(169,175)(170,176)(171,177)(172,178)(173,179)(174,180)(181,187)(182,188)(183,189)(184,190)(185,191)(186,192), (1,71)(2,72)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,25)(21,26)(22,27)(23,28)(24,29)(37,104)(38,105)(39,106)(40,107)(41,108)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,109)(60,110)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,133)(83,134)(84,135)(85,162)(86,163)(87,164)(88,165)(89,166)(90,167)(91,168)(92,157)(93,158)(94,159)(95,160)(96,161)(121,186)(122,187)(123,188)(124,189)(125,190)(126,191)(127,192)(128,181)(129,182)(130,183)(131,184)(132,185)(145,171)(146,172)(147,173)(148,174)(149,175)(150,176)(151,177)(152,178)(153,179)(154,180)(155,169)(156,170), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,145,42,13)(2,176,43,35)(3,155,44,23)(4,174,45,33)(5,153,46,21)(6,172,47,31)(7,151,48,19)(8,170,37,29)(9,149,38,17)(10,180,39,27)(11,147,40,15)(12,178,41,25)(14,64,146,102)(16,62,148,100)(18,72,150,98)(20,70,152,108)(22,68,154,106)(24,66,156,104)(26,63,179,101)(28,61,169,99)(30,71,171,97)(32,69,173,107)(34,67,175,105)(36,65,177,103)(49,83,159,130)(50,139,160,188)(51,81,161,128)(52,137,162,186)(53,79,163,126)(54,135,164,184)(55,77,165,124)(56,133,166,182)(57,75,167,122)(58,143,168,192)(59,73,157,132)(60,141,158,190)(74,85,121,114)(76,95,123,112)(78,93,125,110)(80,91,127,120)(82,89,129,118)(84,87,131,116)(86,191,115,142)(88,189,117,140)(90,187,119,138)(92,185,109,136)(94,183,111,134)(96,181,113,144)>;

G:=Group( (1,93)(2,94)(3,95)(4,96)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,91)(12,92)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,73)(21,74)(22,75)(23,76)(24,77)(25,136)(26,137)(27,138)(28,139)(29,140)(30,141)(31,142)(32,143)(33,144)(34,133)(35,134)(36,135)(37,117)(38,118)(39,119)(40,120)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,97)(61,160)(62,161)(63,162)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,157)(71,158)(72,159)(121,153)(122,154)(123,155)(124,156)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(169,188)(170,189)(171,190)(172,191)(173,192)(174,181)(175,182)(176,183)(177,184)(178,185)(179,186)(180,187), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,177)(14,178)(15,179)(16,180)(17,169)(18,170)(19,171)(20,172)(21,173)(22,174)(23,175)(24,176)(25,146)(26,147)(27,148)(28,149)(29,150)(30,151)(31,152)(32,153)(33,154)(34,155)(35,156)(36,145)(37,72)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,85)(59,86)(60,87)(73,191)(74,192)(75,181)(76,182)(77,183)(78,184)(79,185)(80,186)(81,187)(82,188)(83,189)(84,190)(109,163)(110,164)(111,165)(112,166)(113,167)(114,168)(115,157)(116,158)(117,159)(118,160)(119,161)(120,162)(121,143)(122,144)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(131,141)(132,142), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(97,103)(98,104)(99,105)(100,106)(101,107)(102,108)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120)(121,127)(122,128)(123,129)(124,130)(125,131)(126,132)(133,139)(134,140)(135,141)(136,142)(137,143)(138,144)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156)(157,163)(158,164)(159,165)(160,166)(161,167)(162,168)(169,175)(170,176)(171,177)(172,178)(173,179)(174,180)(181,187)(182,188)(183,189)(184,190)(185,191)(186,192), (1,71)(2,72)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,25)(21,26)(22,27)(23,28)(24,29)(37,104)(38,105)(39,106)(40,107)(41,108)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,109)(60,110)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,133)(83,134)(84,135)(85,162)(86,163)(87,164)(88,165)(89,166)(90,167)(91,168)(92,157)(93,158)(94,159)(95,160)(96,161)(121,186)(122,187)(123,188)(124,189)(125,190)(126,191)(127,192)(128,181)(129,182)(130,183)(131,184)(132,185)(145,171)(146,172)(147,173)(148,174)(149,175)(150,176)(151,177)(152,178)(153,179)(154,180)(155,169)(156,170), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,145,42,13)(2,176,43,35)(3,155,44,23)(4,174,45,33)(5,153,46,21)(6,172,47,31)(7,151,48,19)(8,170,37,29)(9,149,38,17)(10,180,39,27)(11,147,40,15)(12,178,41,25)(14,64,146,102)(16,62,148,100)(18,72,150,98)(20,70,152,108)(22,68,154,106)(24,66,156,104)(26,63,179,101)(28,61,169,99)(30,71,171,97)(32,69,173,107)(34,67,175,105)(36,65,177,103)(49,83,159,130)(50,139,160,188)(51,81,161,128)(52,137,162,186)(53,79,163,126)(54,135,164,184)(55,77,165,124)(56,133,166,182)(57,75,167,122)(58,143,168,192)(59,73,157,132)(60,141,158,190)(74,85,121,114)(76,95,123,112)(78,93,125,110)(80,91,127,120)(82,89,129,118)(84,87,131,116)(86,191,115,142)(88,189,117,140)(90,187,119,138)(92,185,109,136)(94,183,111,134)(96,181,113,144) );

G=PermutationGroup([[(1,93),(2,94),(3,95),(4,96),(5,85),(6,86),(7,87),(8,88),(9,89),(10,90),(11,91),(12,92),(13,78),(14,79),(15,80),(16,81),(17,82),(18,83),(19,84),(20,73),(21,74),(22,75),(23,76),(24,77),(25,136),(26,137),(27,138),(28,139),(29,140),(30,141),(31,142),(32,143),(33,144),(34,133),(35,134),(36,135),(37,117),(38,118),(39,119),(40,120),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,98),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,105),(57,106),(58,107),(59,108),(60,97),(61,160),(62,161),(63,162),(64,163),(65,164),(66,165),(67,166),(68,167),(69,168),(70,157),(71,158),(72,159),(121,153),(122,154),(123,155),(124,156),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(169,188),(170,189),(171,190),(172,191),(173,192),(174,181),(175,182),(176,183),(177,184),(178,185),(179,186),(180,187)], [(1,103),(2,104),(3,105),(4,106),(5,107),(6,108),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,177),(14,178),(15,179),(16,180),(17,169),(18,170),(19,171),(20,172),(21,173),(22,174),(23,175),(24,176),(25,146),(26,147),(27,148),(28,149),(29,150),(30,151),(31,152),(32,153),(33,154),(34,155),(35,156),(36,145),(37,72),(38,61),(39,62),(40,63),(41,64),(42,65),(43,66),(44,67),(45,68),(46,69),(47,70),(48,71),(49,88),(50,89),(51,90),(52,91),(53,92),(54,93),(55,94),(56,95),(57,96),(58,85),(59,86),(60,87),(73,191),(74,192),(75,181),(76,182),(77,183),(78,184),(79,185),(80,186),(81,187),(82,188),(83,189),(84,190),(109,163),(110,164),(111,165),(112,166),(113,167),(114,168),(115,157),(116,158),(117,159),(118,160),(119,161),(120,162),(121,143),(122,144),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(131,141),(132,142)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72),(73,79),(74,80),(75,81),(76,82),(77,83),(78,84),(85,91),(86,92),(87,93),(88,94),(89,95),(90,96),(97,103),(98,104),(99,105),(100,106),(101,107),(102,108),(109,115),(110,116),(111,117),(112,118),(113,119),(114,120),(121,127),(122,128),(123,129),(124,130),(125,131),(126,132),(133,139),(134,140),(135,141),(136,142),(137,143),(138,144),(145,151),(146,152),(147,153),(148,154),(149,155),(150,156),(157,163),(158,164),(159,165),(160,166),(161,167),(162,168),(169,175),(170,176),(171,177),(172,178),(173,179),(174,180),(181,187),(182,188),(183,189),(184,190),(185,191),(186,192)], [(1,71),(2,72),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,67),(10,68),(11,69),(12,70),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,25),(21,26),(22,27),(23,28),(24,29),(37,104),(38,105),(39,106),(40,107),(41,108),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,109),(60,110),(73,136),(74,137),(75,138),(76,139),(77,140),(78,141),(79,142),(80,143),(81,144),(82,133),(83,134),(84,135),(85,162),(86,163),(87,164),(88,165),(89,166),(90,167),(91,168),(92,157),(93,158),(94,159),(95,160),(96,161),(121,186),(122,187),(123,188),(124,189),(125,190),(126,191),(127,192),(128,181),(129,182),(130,183),(131,184),(132,185),(145,171),(146,172),(147,173),(148,174),(149,175),(150,176),(151,177),(152,178),(153,179),(154,180),(155,169),(156,170)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,145,42,13),(2,176,43,35),(3,155,44,23),(4,174,45,33),(5,153,46,21),(6,172,47,31),(7,151,48,19),(8,170,37,29),(9,149,38,17),(10,180,39,27),(11,147,40,15),(12,178,41,25),(14,64,146,102),(16,62,148,100),(18,72,150,98),(20,70,152,108),(22,68,154,106),(24,66,156,104),(26,63,179,101),(28,61,169,99),(30,71,171,97),(32,69,173,107),(34,67,175,105),(36,65,177,103),(49,83,159,130),(50,139,160,188),(51,81,161,128),(52,137,162,186),(53,79,163,126),(54,135,164,184),(55,77,165,124),(56,133,166,182),(57,75,167,122),(58,143,168,192),(59,73,157,132),(60,141,158,190),(74,85,121,114),(76,95,123,112),(78,93,125,110),(80,91,127,120),(82,89,129,118),(84,87,131,116),(86,191,115,142),(88,189,117,140),(90,187,119,138),(92,185,109,136),(94,183,111,134),(96,181,113,144)]])

72 conjugacy classes

class 1 2A···2O 3 4A···4H4I···4X6A···6O12A···12P
order12···234···44···46···612···12
size11···122···26···62···22···2

72 irreducible representations

dim1111112222222222
type++++++--++-+
imageC1C2C2C2C4C4S3D4Q8Dic3D6D6Dic6C4×S3D12C3⋊D4
kernelC2×C6.C42C6.C42C23×Dic3C23×C12C22×Dic3C22×C12C23×C4C22×C6C22×C6C22×C4C22×C4C24C23C23C23C23
# reps14211681624214848

Matrix representation of C2×C6.C42 in GL6(𝔽13)

1200000
0120000
0012000
0001200
0000120
0000012
,
1200000
010000
0012000
0001200
0000120
0000012
,
100000
010000
001000
000100
0000120
0000012
,
100000
010000
0012000
0001200
000010
000001
,
1200000
0120000
0011100
0001200
000058
000050
,
800000
010000
0010700
0010300
000073
0000106

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,11,12,0,0,0,0,0,0,5,5,0,0,0,0,8,0],[8,0,0,0,0,0,0,1,0,0,0,0,0,0,10,10,0,0,0,0,7,3,0,0,0,0,0,0,7,10,0,0,0,0,3,6] >;

C2×C6.C42 in GAP, Magma, Sage, TeX

C_2\times C_6.C_4^2
% in TeX

G:=Group("C2xC6.C4^2");
// GroupNames label

G:=SmallGroup(192,767);
// by ID

G=gap.SmallGroup(192,767);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,758,100,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=c,f^2=b*c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^5>;
// generators/relations

׿
×
𝔽